If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)-40x+391=0
a = 1; b = -40; c = +391;
Δ = b2-4ac
Δ = -402-4·1·391
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-6}{2*1}=\frac{34}{2} =17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+6}{2*1}=\frac{46}{2} =23 $
| c-20=c/1.15 | | 13+3(2y+1)=4y | | 48=6+y | | 150-(2x-9)=x | | 6+a/6=13 | | 12+2a=4a | | 24-81-4p=0 | | 3y+24y+2y=8 | | 4-(-x)=8 | | 2*6+2*x=26 | | -(-x)+2=-2 | | 3y(y-3)=(y-3) | | 3y(y-3)=(y+3) | | 3y(y-2)=(y+3) | | 3(2a+2)-4=0 | | Y=1200(1/2)^r/12 | | 7^x-3=85 | | 7^x-3=32 | | 12^2x=3x12^x | | (2.6-2x)^2=0 | | -5^2+16x-14=0 | | y=147(1) | | 45+11p=166 | | x^2+(2x-8)^2=165^2 | | D=80-2.6t | | 4x^+80x+144=0 | | 67.5=7.5x | | 3x+4+2x-7-4x=4x+3 | | x/4+x/10=7/8 | | (1+r)^20-1/r(1+r)^20=7.041 | | 2.5P-15=p | | 1/2x-x=12 |